Lossy Compression & The Source Coding Theorem

Today we fix the number of bits but allow small error probability ("lossy"):

\[X' \xrightarrow{C} \{0,1\}^2 \xrightarrow{D} X' \]

<table>
<thead>
<tr>
<th>Compressor, encoder</th>
<th>Decompressor, decoder</th>
</tr>
</thead>
</table>

\[\text{WANT: } \Pr(X' \neq X) \leq \delta \]

How to achieve?

* Take set \(S \subseteq \mathcal{X} \) with \(\Pr(X \notin S) \leq \delta \).
* Then we can compress into \(l = \log |S| \) bits with error probability \(\leq \delta \). How?

Simply define \(C \) by sending all \(x \notin S \) to distinct bitstrings. (For \(x \in S \), pick arbitrary or fail.)

Define \(\delta \)-essential bit content by

\[H_{\delta}(X') = H_{\delta}(C) = \min \left\{ \log |S| : \Pr(X \notin S) \leq \delta \right\} \]

\[\Rightarrow H_{\delta}(X') \] is minimal \# bits required to compress \(X' \) with error \(\leq \delta \)

\[H_{\delta}(X') \] is in general quite messy...

Amazingly, it simplifies dramatically if we compress blocks of symbols.

\[\lim_{N \to \infty} \frac{H_{\delta}(X_1, X_2, \ldots, X_N)}{N} = H(P) \]

Shannon’s Source Coding Theorem: Let \(X_1, X_2, \ldots, X_N \) IID \(P \) and \(0 < \delta < 1 \):

- Optimal compression rate for block size \(N \) and error prob \(\leq \delta \)
- Optimal asymptotic compression rate \(\delta \) — independent of \(\delta \)

(i.e. \(\forall \epsilon(\delta), \exists N_0 \forall N \geq N_0 : \left| \frac{H_{\delta}(X_1, X_2, \ldots, X_N)}{N} - H(P) \right| \leq \epsilon \))
If $R > H(P)$: $\exists N_0 \forall N \geq N_0$:

CAN compress at rate R (= into $l = RN$ bits)

If $R < H(P)$: $\forall N \exists N_0$:

CANNOT compress at rate R

Proof of the Source Coding Theorem

NOTATION: $x_N = x_1 \cdots x_N = (x_1, \ldots, x_N)$ for strings of length N.

Typical set:

$T_{N,\varepsilon}(P) = \left\{ x_N \in \mathcal{X}^N : \left| \frac{1}{N} \log \frac{1}{P(x_N)} - H(P) \right| \leq \varepsilon \right\}$

$$\sum_{x_N \in T_{N,\varepsilon}} \frac{1}{P(x_N)} = \frac{1}{N} \sum_{k=1}^N \log \frac{1}{P(x_k)} - H(P) \leq \varepsilon$$

Properties:

1. $2^{-N(H(P) + \varepsilon)} \leq P(x_N) \leq 2^{-N(H(P) - \varepsilon)}$ (by definition)

2. $\# T_{N,\varepsilon} \leq 2^{-N(H(P) + \varepsilon)}$

 Let $P(x_N) \leq \sum_{x_N \in T_{N,\varepsilon}} \frac{1}{P(x_N)} \geq \# T_{N,\varepsilon} \cdot 2^{-N(H(P) + \varepsilon)}$. □

3. $\Pr(x_N \in T_{N,\varepsilon}) \leq \frac{\sigma^2}{N \varepsilon^2} \rightarrow 0$, where $\sigma^2 = \text{Var}(\log \frac{1}{P(x_N)})$.

 Let $L_k = \log \frac{1}{P(x_k)}$ and $\mu = \mathbb{E}[L_k] = H(X_k) = H(P)$. Then:

 $$\Pr\left(\frac{1}{N} \sum_{k=1}^N L_k - \mu > \varepsilon\right) \leq \frac{\text{Var}(L_k)}{N \varepsilon^2}.$$ □

 "Asymptotic Equipartition Property" (AEP)

 "For large N, typical probabilities are $2^{-N(H(P) + \varepsilon)}"$.

Proof of the theorem: Let $\delta(0,1)$ and $\varepsilon > 0$ be arbitrary.

1. $\Pr(x_N \in T_{N,\varepsilon}) \leq 1 - \frac{\sigma^2}{N \varepsilon^2} \geq 1 - \delta$ if N large enough.

2. $\frac{H_S(x_N)}{N} \leq \log \# T_{N,\varepsilon} \leq H(P) + \varepsilon$ for large N. □
(5) Want to prove that \(\frac{H_S(X^N)}{N} \geq H(P) - \varepsilon \) for \(N \) large.

If not: \(\exists \) sets \(S_N \) for \(N \to \infty \) s.t.

\[
\Pr(X^N \in S_N) \geq 1 - \delta \quad \text{and} \quad \#S_N < 2^{N(H(P) - \varepsilon)}.
\]

\[
\implies 1 - \delta \leq \Pr(X^N \in S_N) = \Pr(X^N \in S_{N \cap T_{N,\varepsilon/2}}) + \Pr(X^N \in S_{N \setminus T_{N,\varepsilon/2}})
\]

\[
\leq \Pr(X^N \in S_{N \cap T_{N,\varepsilon/2}}) + \Pr(X^N \notin T_{N,\varepsilon/2}) \to 0 \quad \text{by } 2
\]

\[
\leq \#S_N \cdot 2^{-N(H(P) - \varepsilon/2)} \to 0 \quad \text{by } 2
\]

\[
\leq 2^{-N\varepsilon/2} \to 0
\]

Remark: \(T_{N,\varepsilon} \) is usually NOT the smallest set \(S_N \) w/ \(\Pr(X^N \in S_N) \geq 1 - \delta \).

... but small enough and easy to handle as \(N \to \infty \! \)!
Variations

A How to make it **LOSSLESS**?

When \(x^N \in T_{\text{in}} \), send uncompressed

using \(N \cdot \log \#Ax \) bits.

\[\rightarrow \text{average rate } \bar{R} \leq \frac{1}{N} + \Pr(x^N \in T_{\text{in}}) \left(\log(N) + \frac{3 + \frac{1}{K}}{3} \right) \]

\[+ \Pr(x^N \notin T_{\text{in}}) \cdot \log \#Ax \]

\[\approx H(C) + 2 \text{ for large } N \]

B How to also make it **UNIVERSAL**? (IID, but we do **NOT** know \(P \))

For simplicity: assume \(A \sim \text{LTI} \)'s i.e. data source of bits.

FIX: * block size \(N \)

* a way to order the sets

\[\mathcal{B}(N,k) := \{ x^N \text{ with } k \text{ ones and } N-k \text{ zeros} \} \]

COMPRESSOR: Input: A bitstring \(x^N = x_1 \ldots x_N \)

* Compute \(k := \# \text{ones in } x^N \)

* Determine index \(p \) of \(x^p \) in \(\mathcal{B}(N,k) \)

* Return \(k \) and \(p \) in binary.

\[\approx \log(N) + 1 = \log \# \mathcal{B}(N,k) + 1 \text{ bits} \]

DECOMPRESSOR:

* Clear \(k \) and \(p \)

Key idea: \(\mathcal{B}(N,k) \) can be **much** smaller than \(\# \mathcal{B}(N,k) \)

(e.g. \(k \leq 1 \) for some \(k \))

* Just used in protocol only in the analysis!!

Average rate \(\bar{R} \)? Assume that \(X_1 \ldots, X_N \sim P \). Then:

\(x^N \in T_{\text{in}} \iff \mathcal{B}(N,k) \in T_{\text{in}} \)

\[\Rightarrow \# \mathcal{B}(N,k) \leq \# T_{\text{in}} \]

Typicality only depends on \(\# \text{zeros and ones in } x^N \)!
Thus we can argue as above:

\[
R = \frac{\log(N)}{N} + \frac{\log \#B(n,x)}{N}
\]

dropping some \(\frac{1}{N} \) terms

so Can ignore

\[\Rightarrow 0 \text{ as before} \]

Use \(\Rightarrow \) to obtain the following bound:

\[
\leq \Pr(X^N \notin \text{Tue}) \cdot \frac{\log \#\text{Tue}}{N} + \Pr(X^N \notin \text{Tue}) \frac{\log 2N}{N}
\text{ \(\rightarrow 0 \) as before}
\]

\[\Rightarrow H(\epsilon) + \epsilon \text{ for large } N! \]

\[H(\epsilon) \]

Program this protocol & compress the donkey!

Discussion: Many disadvantages!

* Have to look at entire \(x^N \) to compress. Can we compress by looking at a few symbols at a time?

* Assume IID distribution...what if \(P \) changes? Or if we have local correlations!

\(\bar{\epsilon} \) Wednesday 😊