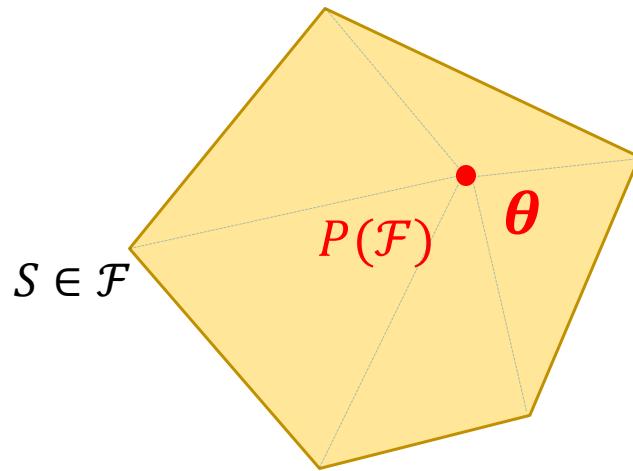


COMPUTING MAX-ENTROPY DISTRIBUTIONS



Nisheeth Vishnoi

Joint work with Mohit Singh and Damian Straszak

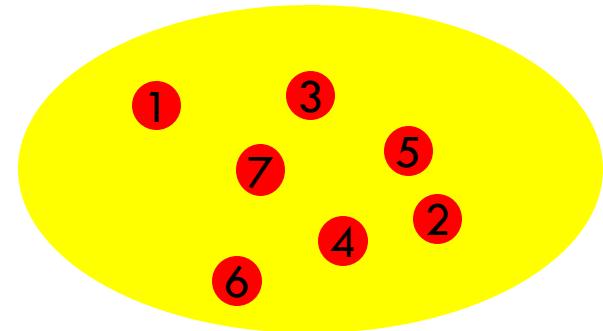
FOCS, October 6, 2018

Sampling from Discrete Spaces

Universe $E = [m]$ of elements

$\mathcal{F} \subseteq 2^{[m]}$ -- **family of allowed sets** (possibly exponential)

$A: E \rightarrow \mathbb{R}_{\geq 0}$ -- **weights** on elements



Goal: Output a set $S \in \mathcal{F}$ with probability proportional to $A_S = \prod_{e \in S} A_e$ or compute $\sum_{S \in \mathcal{F}} A_S$ (Partition function)

Applications: Physics, Mathematics, Information Theory, Statistics, Machine Learning, TCS

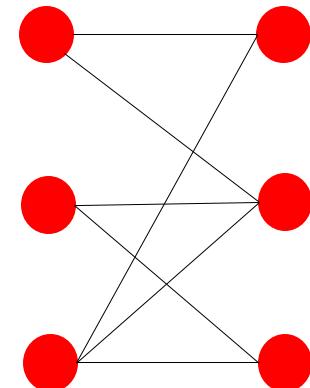
Perfect Matchings in Bip. Graphs

Weighted Bipartite Graph: $G = ([m] = [n] \times [n], A \in \mathbb{R}_{\geq 0}^{n \times n})$

$\mathcal{M} \subseteq 2^{[m]}$ be the *set of perfect matchings* in G

Fact: $P(\mathcal{M}) = \{\Theta \in \mathbb{R}_{\geq 0}^{n \times n} : \forall i \sum_{j=1}^n \Theta_{ij} = 1 \text{ and } \forall j \sum_{i=1}^n \Theta_{ij} = 1\}$

Sampling Problem: For $M \in \mathcal{M}$, $\mathbb{P}[M] \propto \prod_{ij \in M} A_{ij}$



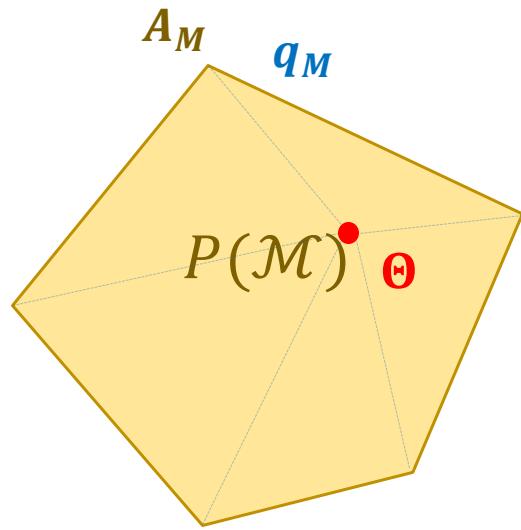
Counting Problem: $\sum_{M \in \mathcal{M}} \prod_{ij \in M} A_{ij} = \text{Per}(A)$

Valiant '79: #P-Hard to compute $\text{Per}(A)$

Jerrum-Sinclair-Vigoda '04: FPRAS for $\text{Per}(A)$ using MCMC

Linial-Samorodnitsky-Wigderson '00: e^n -approximation for $\text{Per}(A)$ using SCALING

Entropy and Counting



PRIMAL(Θ) =

$$\sup_q \sum_{M \in \mathcal{M}} q_M \log \frac{A_M}{q_M}$$

q – prob. distribution over \mathcal{M}

The expectation of q is Θ

Fact 1: $\text{PRIMAL}(\Theta) \leq \log \text{Per}(A) \quad \forall \Theta \in P(\mathcal{M})$

Fact 2: $\text{PRIMAL}(\widetilde{\Theta}) = \log \text{Per}(A) \quad \text{for } \widetilde{\Theta} = \frac{1}{\sum A_M} \sum_M 1_M A_M$

Corollary: $\sup_{\Theta \in P(\mathcal{M})} \text{PRIMAL}(\Theta) = \log \text{Per}(A)$

Nothing special about perfect matchings -- holds for any \mathcal{F} !

Duality

PRIMAL(Θ) =

$$\sup_q \sum_{M \in \mathcal{M}} q_M \log \frac{A_M}{q_M}$$

$$\sum_{M \in \mathcal{M}} q_M = 1; q_M \geq 0$$

$$\forall i, j, \sum_{M \in \mathcal{M}; ij \in M} q_M = \Theta_{ij}$$

DUAL(Θ) =

$$\inf_{\lambda \in \mathbb{R}^{n \times n}} \log \sum_M A_M e^{\langle \lambda, 1_M \rangle} - \langle \lambda, \Theta \rangle$$

Substitute $e^{\lambda_{ij}} = z_{ij}$ to obtain DUAL(Θ) = $\inf_{z \in \mathbb{R}_{>0}^{n \times n}} \log \sum_M A_M \prod_{ij \in M} z_{ij} - \sum_{i,j} \Theta_{ij} \log z_{ij}$

Exponentiate to obtain DUAL(Θ) = $\inf_{z \in \mathbb{R}_{>0}^{n \times n}} \frac{\sum_M A_M \prod_{ij \in M} z_{ij}}{\prod_{i,j} z_{ij}^{\Theta_{ij}}}$

Corollary [Folklore]: $\sup_{\Theta \in P(\mathcal{M})} \inf_{z \in \mathbb{R}_{>0}^{n \times n}} \frac{\sum_M A_M \prod_{ij \in M} z_{ij}}{\prod_{i,j} z_{ij}^{\Theta_{ij}}} = \text{Per}(A)$

A Relaxation

$$\sup_{\Theta \in P(\mathcal{M})} \inf_{z \in \mathbb{R}_{>0}^{n \times n}} \frac{p(z)}{\prod_{i,j} z_{ij}^{\Theta_{ij}}} = \text{Per}(A)$$

Hard to evaluate!

Easy to evaluate!

Observation: $P(\mathcal{M}) = P(\mathcal{M}_1) \cap P(\mathcal{M}_2)$ (intersection of 2 matroids)

$$P(\mathcal{M}_1) = \left\{ \Theta \in \mathbb{R}_{\geq 0}^{n \times n} : \forall j \sum_{i=1}^n \Theta_{ij} = 1 \right\} \text{ and } P(\mathcal{M}_2) = \left\{ \Theta \in \mathbb{R}_{\geq 0}^{n \times n} : \forall i \sum_{j=1}^n \Theta_{ij} = 1 \right\}$$

Let $\tilde{p}(z) = \prod_i \sum_j A_{ij} z_{ij}$ -- **Newton polytope** of \tilde{p} is $P(\mathcal{M}_2)$ (if $A > 0$)

New Relaxation:

$$\sup_{\Theta \in P(\mathcal{M}_1)} \inf_{z \in \mathbb{R}_{>0}^{n \times n}} \frac{\tilde{p}(z)}{\prod_{i,j} z_{ij}^{\Theta_{ij}}}$$

Substitute: $x_i = z_{ij}$ for all j

Recovering Gurvits' capacity-based relaxation [Straszak-V. 17a]:

$$\sup_{\Theta \in P(\mathcal{M}_1)} \inf_{z \in \mathbb{R}_{>0}^{n \times n}} \frac{\tilde{p}(z)}{\prod_{i,j} z_{ij}^{\Theta_{ij}}} = \inf_{x \in \mathbb{R}_{>0}^n} \frac{\prod_{i \in [n]} \sum_{j \in [n]} A_{ij} x_j}{\prod_i x_i}$$

Beyond Permanent

Input:

Evaluation oracle to polynomial $p \in \mathbb{R}_{\geq 0}[x_1, x_2, \dots, x_m]$

$$p(x) = \sum_{S \subseteq [m]} p_S x^S$$

Separation oracle to the polytope of $\mathcal{F} \subseteq 2^{[m]}$

Problem
 $\sum_{S \in \mathcal{F}} p_S ?$

[Applications: Fair Sampling from determinantal measures [Celis et al. 16, 17, 18]]

Relaxation: $\text{Cap}_{\mathcal{F}}(p) = \sup_{\Theta \in P(\mathcal{F})} \inf_{z \in \mathbb{R}_{>0}^m} \frac{p(z)}{\prod_i z_i^{\Theta_i}}$

Theorem [Straszak-V. STOC '17]: Assuming p is homogeneous and real-stable

$$\frac{\text{Cap}_{\mathcal{F}}(p)}{M} \leq \sum_{S \in \mathcal{F}} p_S \leq \text{Cap}_{\mathcal{F}}(p)$$

$M < \infty$ whenever \mathcal{F} supports a real-stable polynomial; depends only on \mathcal{F}

Similar and independent result by [Anari-OveisGharan'17]

Application: Rank-1 Brascamp-Lieb

Given m vectors $v_1, v_2, \dots, v_m \in \mathbb{R}^n$ and a $\theta \in \mathbb{R}_+^m$

Brascamp-Lieb Constant

$$\inf_{z \in \mathbb{R}_{>0}^m} \frac{\det \sum_j \theta_j z_j v_j v_j^\top}{\prod_i z_i^{\theta_i}} = \inf_{z \in \mathbb{R}_{>0}^m} \frac{\sum_{S \subseteq [m], |S|=n} \theta^S z^S \det V_S V_S^\top}{\prod_i z_i^{\theta_i}}$$

Complexity studied by [GargGurvitsOlivieraWigderson '16] – pseudo-polynomial time scaling-based algorithm in the bit complexity of θ (for the general BL case)

Can we compute $\inf_{z \in \mathbb{R}_{>0}^m} \frac{p(z)}{\prod_i z_i^{\theta_i}} = \inf_{y \in \mathbb{R}^m} \log p(e^y) - \sum \theta_i y_i$ for all $\theta \in P$?

Unlike permanent, not clear how to scale efficiently ...

Ellipsoid Method

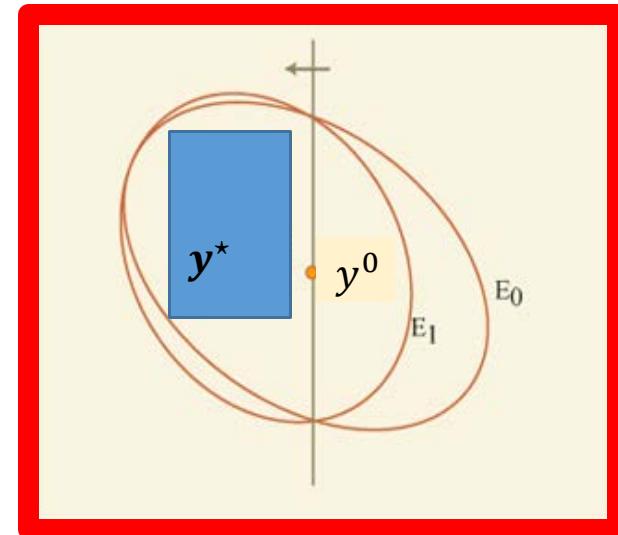
$$\text{OPT} = \inf_{y \in \mathbb{R}^m} \log p(e^y) - \sum \theta_i y_i = \inf_{y \in \mathbb{R}^m} f(y)$$

Reduce to Feasibility: Given A , check if **OPT** is $\leq A + \varepsilon$ or $> A$

Assume $\|y^*\| \leq R, f \in [-F, F]$

Ellipsoid Algorithm:

- **Start** with an ellipsoid E_0 that contains y^*
- At k th step, let E_k be the ellipsoid centered at y^k
 - **IF** $f(y^k) \leq A$, **DONE**
 - **ELSE**
 - use evaluation oracle for p to get $\nabla f(y^k)$
 - $E_{k+1} \supseteq E_k \cap \{y: \langle y - y^k, \nabla f(y^k) \rangle \leq 0\}$
- **Stop** when the radius of the ellipsoid becomes $\leq \varepsilon R/M$



Invariant: If $f(y^*) \leq A$ then $y^* \in E_k$ for all k

Proof: Convexity of f implies $\langle y^* - y^k, \nabla f(y^k) \rangle + f(y^k) \leq f(y^*) \leq A$

Since $f(y^k) > A$, $\langle y^* - y^k, \nabla f(y^k) \rangle < 0$

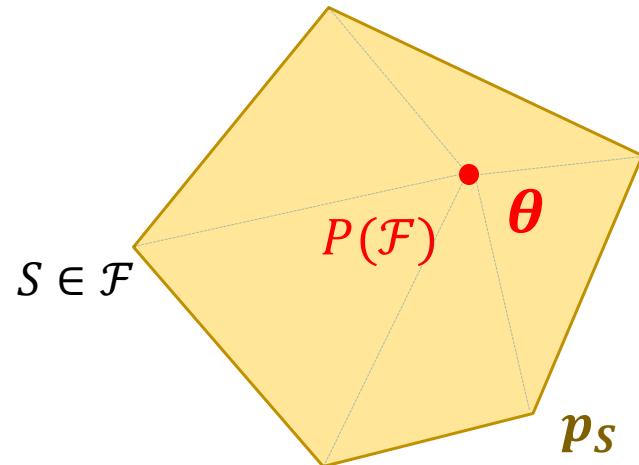
Running Time: $\text{poly}(m, t_f, t_{\nabla f}, \log \frac{RF}{\varepsilon})$

Bounding R and M?

$$\inf_{y \in \mathbb{R}^m} \log p(e^y) - \sum \theta_i y_i$$

$$\sup_{\mathbf{q}} \sum_{S \in \mathcal{F}} \mathbf{q}_S \log \frac{p_S}{\mathbf{q}_S} \Rightarrow F \leq m$$

- \mathbf{q} – prob. distribution over \mathcal{F}
- The expectation of \mathbf{q} is θ



Bounding R?: As θ comes close to the boundary, y^* must blow up. By how much?

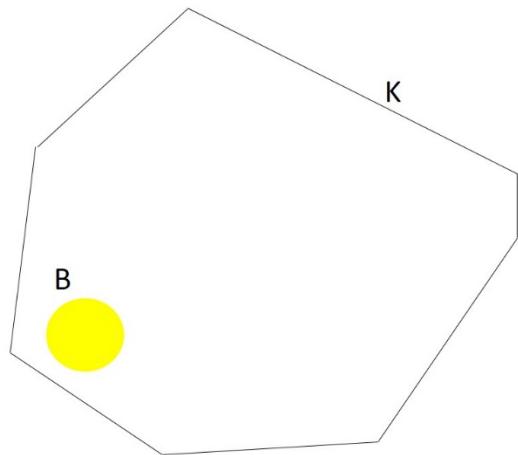
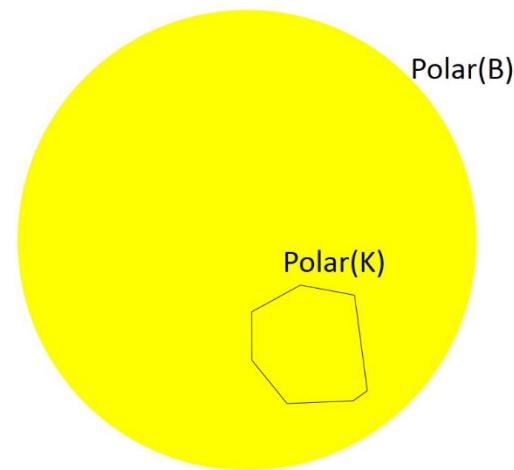
Special case of spanning tree polytope: [Asadpour et al. '10, Oveis-Gharan et al '11]

Theorem [SinghV. '14]: If $\Theta \in \text{Int}_\eta(P)$ $R \leq \text{poly}(1/\eta)$ – all combinatorial polytopes

Theorem [StraszakV.]: If the unary complexity of all facets is polynomial in m then, $R \leq \text{poly}(m)$ – includes almost all combinatorial polytopes (*along with tightness result*)

Bounding Box 1

- **Theorem [SinghV. '14]:** If $\Theta \in \text{Int}_\eta(P)$ then $\|\lambda^*\| = R \leq m/\eta$
- **Proof:** Since entropy over a discrete set of size at most 2^m is at most m
 - $\langle \lambda^*, \theta \rangle + \log \sum_S e^{-\langle \lambda^*, 1_S \rangle} = \sum_S \ln e^{\langle \lambda^*, \theta \rangle - \langle \lambda^*, 1_S \rangle} \leq m \Rightarrow \langle \lambda^*, \theta \rangle - \langle \lambda^*, 1_S \rangle \leq m \quad \forall S$
 - $\left\langle -\frac{\lambda^*}{m}, v - \theta \right\rangle \leq 1 \quad \forall v \in \text{convhull}(\{1_S\})$
 - (up to a centering and assuming convhull full dimensional)
 - $-\frac{\lambda^*}{m} \in \text{polar} - \text{convhull}$
 - θ is in η interior of convhull implies polar – convhull contained in ball of radius $\frac{1}{\eta}$
 $\Rightarrow \|\lambda^*\| \leq m/\eta$



Bounding Box 2

- $g(\theta) = \inf_{y \in \mathbb{R}^m} h(\theta, y) := \inf_{y \in \mathbb{R}^m} \log \sum_{\alpha \in \mathcal{F}} p_\alpha e^{\langle \alpha - \theta, y \rangle}$

- **Theorem [Straszak-V.]:** Consider a polytope

$$P = \{x \in \mathbb{R}^m : \langle a_i, x \rangle \leq b_i \ \forall i \in I\} \cap H \text{ with } a_i \in \mathbb{Z}^m \text{ and } \|a_i\| \leq M$$

$$\text{Then } \forall \theta \in P \ \exists y \in \mathbf{B}(\mathbf{0}, \mathbf{poly}\left(m, M, \max_{\alpha \in \mathcal{F}} \log |\mathbf{p}_\alpha|, \log\left(\frac{m}{\varepsilon}\right)\right)) \text{ s.t. } h(\theta, y) \leq g(\theta) + \varepsilon$$

Proof: Let y^* be an optimal solution

Step 1: Write $y^* = \sum \beta_i a_i$ -- as a non-negative combination of normal vectors of tight constraints at a vertex α^* . Select an α that maximizes $\langle \alpha, y^* \rangle$ and then use Farkas Lemma

Step 2: For $\Delta = m + M + \max_{\alpha \in \mathcal{F}} \log |\mathbf{p}_\alpha| + \log\left(\frac{m}{\varepsilon}\right)$, let $y^\circ = \sum \min(\beta_i, \Delta) a_i$. Then
$$h(\theta, y^\circ) \leq h(\theta, y^*) + \varepsilon$$

Relies on the fact that the coefficients of the inequalities defining P are integral – thus for any α that does not lie on a facet $\langle a_i, x \rangle = b_i$, $\langle \alpha^* - \alpha, a_i \rangle \geq 1$

Step 3: Thus $\|y^\circ\| \leq m\Delta \|a_i\| \leq \text{poly}(m)\Delta M$.

Entropy interpretation seems important to obtain the bit complexity bounds

Summary and Challenges

- Resolved the bit complexity of max-entropy for a large class of polytopes
- Applications to constrained sampling/optimization, rank 1 Brascamp-Lieb, matrix scaling

- Tight bit complexity examples for 0/1 polytopes?
- Faster (scaling/interior point) algorithms for max-entropy?
- Polynomial time algorithm for Brascamp-Lieb constant for rank 2?

Thanks! Questions?