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Sampling from Discrete Spaces

Universe E = [m] of elements @ 3 ®

F c 2™ __ family of allowed sets (possibly exponential) 4 2
6

A:E - R,y -- weights on elements

Goal: Output a set S € Fwith probability proportional to Ag = [[.e5 Ae or compute
Y.ser Ag (Partition function)

Applications: Physics, Mathematics, Information Theory, Statistics, Machine Learning, TCS



Perfect Matchings in Bip. Graphs

Weighted Bipartite Graph: G = ([m] = [n] X [n],A € RE™
M C 2™ be the set of perfect matchings in G
Fact: P(M) = {0 € RIg™: Vi X7.,0;; =1 and Vj XiL =1}

Sampling Problem: For M € M/, P[M] « HijEMAij

Counting Problem: 3./ [1;;ep Aij = Per (4)

Valiant '79: #P-Hard to compute Per(A4)
Jerrum-Sinclair-Vigoda '04: FPRAS for Per(A4) using MCMC

Linial-Samorodnitsky-Wigderson ‘00: e™-approximation for Per(A4) using SCALING



Entropy and Counting

AM_ gy PRIMAL(®) =
A

sup Ymenr g log =

. q M

e
P(M) 0 q — prob. distribution overM
The expectation of g is O
Fact 1: PRIMAL(O) < log Per(A4) VO EPM)

Fact 2: PRIMAL(®) = log Per(4) for 8 = ﬁzM 1y Ay

Corollary: sup PRIMAL(®) = log Per(A)
OcP(M)

Nothing special about perfect matchings -- holds for any F!



Duality
PRIMAL(Q) = “ DUAL(®) =

AMm
1 M
sgp Xmenr 9 log o

dmemdu =1;qy =0

Vij, Xmerijem dm = Ojj

inf log Y, Aye M (1, 0)

/’leRnXTl

A

Substitute eV = Zij to obtain DUAL(@) = inf log ZMAM HijEM Zjj — Zl] 01] log Zij
zeRLE™ ’

. _ S A [l iens Zii
Exponentiate to obtain DUAL(Q) = inf =M UMY
z€R™  lijziY

A . .
Corollary [Folklore]: supgcpar) Zei[gntm ZMHM 13”5?;_’ Sl Per(A)
>0 i,j4ij




A Relaxation

p(z)
SUPeep(M) 1]1%1an” . 2.9 = Per(4)
i,j 2l

Observation: P(M) = P(M{) N P57, (intersection of 2 matroids)
P(M;) = {0 € REX™v) ¥1L,10;; =1 } and P(M) = {0 € RIg™: Vi Y-
Let p(2) = [I;2;Aijzij -- Newton polytope of p is P(M) (If A > 0)

p(2)

New Relaxation: su inf —————
Peer(ir) ZEREM Hijzijeu

Substitute: x; = z;; for all j

Recovering Gurvits’ capacity-based relaxation [Straszak-V. 17a]:

b (2 . I1; > A:x
SUP@ep(M;) inf L)@__ — ipf —€lrlsjem TGt
1 Rnxn Hij zij ij xE]RQOO Hi x;




Beyond Permanent

Input:
Evaluation oracle to polynomial p € R.[x1, X5, ..., X ]
_ S
p(X) = Xscim)PsX
Separation oracle to the polytope of F C 2lml

Problem
Y.serPs ?

[Applications: Fair Sampling from determinantal measures [Celis et al. 16, 17, 18]]

Relaxation: Capy(p) = supeep(r) Inf p(z)@.

zeRTY [l;z; ¢

Theorem [Straszak-V. STOC “17]: Assuming p is homogeneous and real-stable

C
M 2 ps < Caps(p)

SEF
M < co whenever F supports a real-stable polynomial; depends only on F

Similar and independent result by [Anari-OveisGharan'17]



Application: Rank-1 Brascamp-Lieb

Given m vectors V1, Vy, ..., Uy, € R" and a 8 € RT

Brascamp-Lieb Constant

T S_S T
detZJQJZ]v]v]_ . ZSQ[m],IS|=n9 VA detVSVS

zeRTY [zt zeRY), [zt

Complexity studied by [GargGurvitsOlivieraWigderson ‘16] — pseudo-polynomial time
scaling-based algorithm in the bit complexity of 6 (for the general BL case)

Can we compute inf p(zza, = irﬂl%iinlogp(ey) —>.0;y; fordll 6 € P?
y€

zeRTy [1;z; ¢

i

Unlike permanent, not clear how to scale efficiently ...



Ellipsoid Method

OPT = yielgllgfm logp(e”) — X60,y; = yie‘]}{mf )
Reduce to Feasibility: Given A4, check if OPTis< A+ cor> A
Assume ||y*|| < R, f € [-F,F]

Ellipsoid Algorithm:
 Start with an ellipsoid E, that contains y*
* At kth step, let Ej, be the ellipsoid centered at yk
 IFf(y*) < A DONE
e ELSE
* use evaluation oracle for p to get Vf(y*)
* Epp1 2E.n{y: {y -y ,Vf(y")) <0}
e Stop when the radius of the ellipsoid becomes < ¢eR/M

Invariant: If f(y*) < Athen y* € Ej, for all k
Proof: Convexity of f implies (y* — y*,Vf(y*)) + f(y*) < f(3*) < A
Since f(v*) > A, (y* —y*, Vf(y*)) <0

Running Time: poly(m, t, tys, log g)



Bounding R and M?
yier]}g;n logp(e”) — X0,y

sup Yserqslog >F<m
q

0 q — prob. distribution over F

-1 The expectation of q is O

Bounding R?: As O comes close to the boundary, y* must blow up. By how much?




Bounding Box 1

* Theorem [SinghV. ’14]: If ©® € Int, (P) then||A*|[ =R < m/n

* Proof: Since entropy over a discrete set of size at most 2™ is at most m
+ (1%,0) +logYge” M) = Y Ine O -W1s) <m = (17,0) — (A", 1g)<m VS

. <—%, v — 9> < 1V v € convhull({1g})
* (up to a centering and assuming convhull full dimensional)

*

. —Le polar — convhull
m

* 0 is in 1 interior of convhull implies polar — convhull contained in ball of rcdius%
= |2l = m/n

/\\\ Polar(B)
&

I Polar(K)

i’ B “-ﬁ\
;‘ // ( \
\\ / )



Bounding Box 2

¢ 9(9) = inf h(e,y) = Inf lOgZaETpae“Z_e’y)
yeR™ yeR™

* Theorem [Straszak-V.]: Consider a polytope
P={xeR™(a;x)<b;Viel}nNHwitha; € Z™ and ||a;|| < M

ThenV 8 € P 3y € B(0, poly (m, M, max log |p,|,log (%)) s.t. h(60,y) < g(0) +¢
(4
Proof: Let y* be an optimal solution

Step1: Write y* = Y. 8;a; -- as a non-negative combination of normal vectors of tight
constraints at a vertex a*. Select an a that maximizes (@, y*) and then use Farkas Lemma

Step 2: For A=m+ M + max log |p,|*+ log (%), let y° =Y min(f;,A) a;. Then
a
h(0,y°) <h(0,y*) +¢

Relies on the fact that the coefficients of the inequalities defining P are integral — thus for
any «a that does not lie on a facet (a;, x) = b;, (a"—a,a;) = 1

Step 3: Thus ||y°|| < mA|

a; || < poly(m)AM.

Entropy interpretation seems important to obtain the bit complexity bounds



Summary and Challenges

* Resolved the bit complexity of max-entropy for a large class of polytopes

* Applications to constrained sampling/optimization, rank 1 Brascamp-Lieb, matrix
scaling

e Tight bit complexity examples for 0/1 polytopes?
* Faster (scaling/interior point) algorithms for max-entropy?

* Polynomial time algorithm for Brascamp-Lieb constant for rank 22

Thanks! Questions?
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