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Universe 𝐸𝐸 = [𝑚𝑚] of elements

ℱ ⊆ 2[𝑚𝑚] -- family of  allowed sets (possibly exponential)

𝐴𝐴:𝐸𝐸 → ℝ≥0 -- weights on elements

Goal: Output a set 𝑆𝑆 ∈ ℱwith probability proportional to 𝐴𝐴𝑆𝑆 = ∏𝑒𝑒∈𝑆𝑆 𝐴𝐴𝑒𝑒 or compute 
∑𝑆𝑆∈ℱ 𝐴𝐴𝑆𝑆 (Partition function) 

Applications: Physics, Mathematics, Information Theory, Statistics, Machine Learning, TCS



Perfect Matchings in Bip. Graphs
Weighted Bipartite Graph: 𝐺𝐺 = ( 𝑚𝑚 = 𝑛𝑛 × 𝑛𝑛 ,𝐴𝐴 ∈ ℝ≥0

𝑛𝑛×𝑛𝑛)

ℳ ⊆ 2[𝑚𝑚] be the set of  perfect matchings in 𝐺𝐺

Sampling Problem: For 𝑀𝑀 ∈ ℳ, ℙ[𝑀𝑀] ∝ ∏𝑖𝑖𝑖𝑖∈𝑀𝑀𝐴𝐴𝑖𝑖𝑖𝑖

Fact: 𝑃𝑃 ℳ = {Θ ∈ ℝ≥0
𝑛𝑛×𝑛𝑛:∀𝑖𝑖 ∑𝑗𝑗=1𝑛𝑛 Θ𝑖𝑖𝑖𝑖 = 1 and ∀𝑗𝑗 ∑𝑖𝑖=1𝑛𝑛 Θ𝑖𝑖𝑖𝑖 = 1}

Valiant ’79: #P-Hard to compute Per 𝐴𝐴

Jerrum-Sinclair-Vigoda ’04: FPRAS for Per 𝐴𝐴 using MCMC 

Linial-Samorodnitsky-Wigderson ‘00: 𝑒𝑒𝑛𝑛-approximation for Per 𝐴𝐴 using SCALING 

Counting Problem: ∑𝑀𝑀∈ℳ∏𝑖𝑖𝑖𝑖∈𝑀𝑀𝐴𝐴𝑖𝑖𝑖𝑖 = Per 𝐴𝐴



Entropy and Counting

𝑃𝑃(ℳ) 𝚯𝚯

𝑨𝑨𝑴𝑴 𝒒𝒒𝑴𝑴 PRIMAL Θ =

sup
𝑞𝑞

∑𝑀𝑀∈ℳ 𝑞𝑞𝑀𝑀 log 𝐴𝐴𝑀𝑀
𝑞𝑞𝑀𝑀

𝑞𝑞 – prob. distribution overℳ
The expectation of 𝑞𝑞 is Θ

Fact 1: PRIMAL Θ ≤ log Per 𝐴𝐴 ∀ Θ ∈ 𝑃𝑃 ℳ

Fact 2: PRIMAL �Θ = log Per 𝐴𝐴 for �Θ = 1
∑𝐴𝐴𝑀𝑀

∑𝑀𝑀 1𝑀𝑀𝐴𝐴𝑀𝑀

Nothing special about perfect matchings -- holds for any ℱ!

Corollary: sup
Θ∈𝑃𝑃 ℳ

PRIMAL Θ = log Per 𝐴𝐴



Duality
PRIMAL Θ =

sup
𝑞𝑞

∑𝑀𝑀∈ℳ 𝑞𝑞𝑀𝑀 log 𝐴𝐴𝑀𝑀
𝑞𝑞𝑀𝑀

∑𝑀𝑀∈ℳ𝑞𝑞𝑀𝑀 = 1 ; 𝑞𝑞𝑀𝑀 ≥ 0
∀𝒊𝒊𝒊𝒊, ∑𝑴𝑴∈𝓜𝓜;𝒊𝒊𝒊𝒊∈𝑴𝑴𝒒𝒒𝑴𝑴 = 𝚯𝚯𝒊𝒊𝒊𝒊

Corollary [Folklore]: 𝐬𝐬𝐬𝐬𝐩𝐩𝚯𝚯∈𝑷𝑷(𝓜𝓜) 𝐢𝐢𝐢𝐢𝐢𝐢
𝒛𝒛∈ℝ>𝟎𝟎

𝒏𝒏×𝒏𝒏

∑𝑀𝑀𝐴𝐴𝑀𝑀 ∏𝑖𝑖𝑗𝑗∈𝑀𝑀 𝑧𝑧𝑖𝑖𝑖𝑖
∏𝑖𝑖,𝑗𝑗 𝑧𝑧𝑖𝑖𝑖𝑖

Θ𝑖𝑖𝑖𝑖
= Per(𝐴𝐴)

Substitute 𝐞𝐞𝝀𝝀𝒊𝒊𝒊𝒊 = 𝒛𝒛𝒊𝒊𝒊𝒊 to obtain DUAL Θ = inf
𝑧𝑧∈ℝ>0𝑛𝑛×𝑛𝑛 log ∑𝑀𝑀𝐴𝐴𝑀𝑀 ∏𝑖𝑖𝑗𝑗∈𝑀𝑀 𝑧𝑧𝑖𝑖𝑖𝑖 − ∑𝑖𝑖,𝑗𝑗 𝛩𝛩𝑖𝑖𝑖𝑖 log 𝑧𝑧𝑖𝑖𝑖𝑖

DUAL Θ =

inf
𝜆𝜆∈ℝ𝑛𝑛×𝑛𝑛 log∑𝑀𝑀𝐴𝐴𝑀𝑀𝑒𝑒 𝜆𝜆,1𝑀𝑀 - 𝜆𝜆,Θ

Exponentiate to obtain DUAL Θ = inf
𝑧𝑧∈ℝ>0𝑛𝑛×𝑛𝑛

∑𝑀𝑀𝐴𝐴𝑀𝑀 ∏𝑖𝑖𝑗𝑗∈𝑀𝑀 𝑧𝑧𝑖𝑖𝑖𝑖
∏𝑖𝑖,𝑗𝑗 𝑧𝑧𝑖𝑖𝑖𝑖

Θ𝑖𝑖𝑖𝑖



A Relaxation
supΘ∈𝑃𝑃(ℳ) inf

𝑧𝑧∈ℝ>0𝑛𝑛×𝑛𝑛

𝒑𝒑(𝒛𝒛)
∏𝑖𝑖,𝑗𝑗 𝑧𝑧𝑖𝑖𝑖𝑖

Θ𝑖𝑖𝑖𝑖
= Per(𝐴𝐴)

Hard to 
evaluate!

Observation: 𝑷𝑷(𝓜𝓜) = 𝑷𝑷(𝓜𝓜1) ∩ 𝑃𝑃(𝓜𝓜2) (intersection of 2 matroids)

𝑃𝑃 ℳ1 = Θ ∈ ℝ≥0
𝑛𝑛×𝑛𝑛:∀𝑗𝑗 ∑𝑖𝑖=1𝑛𝑛 Θ𝑖𝑖𝑖𝑖 = 1 and 𝑃𝑃 ℳ2 = Θ ∈ ℝ≥0

𝑛𝑛×𝑛𝑛:∀𝑖𝑖 ∑𝑗𝑗=1𝑛𝑛 Θ𝑖𝑖𝑖𝑖 = 1

Let �𝑝𝑝 𝑧𝑧 = ∏𝑖𝑖∑𝑗𝑗 𝐴𝐴𝑖𝑖𝑖𝑖𝑧𝑧𝑖𝑖𝑖𝑖 -- Newton polytope of  �𝑝𝑝 is 𝑃𝑃(ℳ2) (If 𝐴𝐴 > 0)

New Relaxation: supΘ∈𝑃𝑃(ℳ1) inf
𝑧𝑧∈ℝ>0𝑛𝑛×𝑛𝑛

�𝑝𝑝(𝑧𝑧)
∏𝑖𝑖,𝑗𝑗 𝑧𝑧𝑖𝑖𝑖𝑖

𝛩𝛩𝑖𝑖𝑖𝑖

Substitute: 𝑥𝑥𝑖𝑖 = 𝑧𝑧𝑖𝑖𝑖𝑖 for all 𝑗𝑗

Easy to 
evaluate!

Recovering Gurvits’ capacity-based relaxation [Straszak-V. 17a]: 

supΘ∈𝑃𝑃(ℳ1) inf
𝑧𝑧∈ℝ>0𝑛𝑛×𝑛𝑛

�𝑝𝑝(𝑧𝑧)
∏𝑖𝑖,𝑗𝑗 𝑧𝑧𝑖𝑖𝑖𝑖

𝛩𝛩𝑖𝑖𝑖𝑖
= inf

𝑥𝑥∈ℝ>0𝑛𝑛 0

∏𝑖𝑖∈[𝑛𝑛] ∑𝑗𝑗∈[𝑛𝑛] 𝐴𝐴𝑖𝑖𝑖𝑖𝑥𝑥𝑗𝑗
∏𝑖𝑖 𝑥𝑥𝑖𝑖



Beyond Permanent

Relaxation: Capℱ 𝑝𝑝 = supΘ∈𝑃𝑃(ℱ) inf
𝑧𝑧∈ℝ>0𝑚𝑚

𝑝𝑝(𝑧𝑧)
∏𝑖𝑖 𝑧𝑧𝑖𝑖

𝛩𝛩𝑖𝑖

Input:
Evaluation oracle to polynomial 𝑝𝑝 ∈ ℝ≥0 𝑥𝑥1,𝑥𝑥2, … , 𝑥𝑥𝑚𝑚

𝑝𝑝 𝑥𝑥 = ∑𝑆𝑆⊆[𝑚𝑚]𝑝𝑝𝑆𝑆𝑥𝑥𝑆𝑆

Separation oracle to the polytope of ℱ ⊆ 2[𝑚𝑚]

Problem
∑𝑆𝑆∈ℱ 𝑝𝑝𝑆𝑆 ?

Theorem [Straszak-V. STOC ‘17]: Assuming 𝑝𝑝 is homogeneous and real-stable
Capℱ 𝑝𝑝

𝑀𝑀 ≤�
𝑆𝑆∈ℱ

𝑝𝑝𝑆𝑆 ≤ Ca𝑝𝑝ℱ 𝑝𝑝

𝑴𝑴 < ∞ whenever 𝓕𝓕 supports a real-stable polynomial; depends only on 𝓕𝓕

Similar and independent result by [Anari-OveisGharan'17]

[Applications: Fair Sampling from determinantal measures [Celis et al. 16, 17, 18]] 



Application: Rank-1 Brascamp-Lieb

Brascamp-Lieb Constant

inf
𝑧𝑧∈ℝ>0𝑚𝑚

det ∑𝑗𝑗 𝜃𝜃𝑗𝑗𝑧𝑧𝑗𝑗𝑣𝑣𝑗𝑗𝑣𝑣𝑗𝑗
⊤

∏𝑖𝑖 𝑧𝑧𝑖𝑖
𝛩𝛩𝑖𝑖

= inf
𝑧𝑧∈ℝ>0𝑚𝑚

∑𝑆𝑆⊆ 𝑚𝑚 , 𝑆𝑆 =𝑛𝑛 𝜃𝜃
𝑆𝑆𝑧𝑧𝑆𝑆 det 𝑉𝑉𝑆𝑆𝑉𝑉𝑆𝑆

⊤

∏𝑖𝑖 𝑧𝑧𝑖𝑖
𝛩𝛩𝑖𝑖

Given 𝑚𝑚 vectors 𝑣𝑣1, 𝑣𝑣2, … , 𝑣𝑣𝑚𝑚 ∈ ℝ𝑛𝑛 and a 𝜃𝜃 ∈ ℝ+
𝑚𝑚

Complexity studied by [GargGurvitsOlivieraWigderson ‘16] – pseudo-polynomial time 
scaling-based algorithm in the bit complexity of 𝜃𝜃 (for the general BL case)

Can we compute 𝐢𝐢𝐢𝐢𝐢𝐢
𝒛𝒛∈ℝ>𝟎𝟎

𝒎𝒎
𝑝𝑝(𝑧𝑧)
∏𝑖𝑖 𝑧𝑧𝑖𝑖

Θ𝑖𝑖
= inf

𝑦𝑦∈ℝ𝑚𝑚
log 𝑝𝑝(𝑒𝑒𝑦𝑦)−∑𝜃𝜃𝑖𝑖𝑦𝑦𝑖𝑖 for all 𝜃𝜃 ∈ 𝑃𝑃?

Unlike permanent, not clear how to scale efficiently …



Reduce to Feasibility: Given 𝐴𝐴, check if OPT is ≤ 𝐴𝐴 + 𝜀𝜀 or > 𝐴𝐴

Assume 𝑦𝑦⋆ ≤ 𝑅𝑅, 𝑓𝑓 ∈ −𝐹𝐹,𝐹𝐹

Ellipsoid Algorithm:
• Start with an ellipsoid 𝐸𝐸0 that contains 𝑦𝑦⋆

• At 𝑘𝑘th step, let 𝐸𝐸𝑘𝑘 be the ellipsoid centered at 𝑦𝑦𝑘𝑘

• IF 𝑓𝑓 𝑦𝑦𝑘𝑘 ≤ 𝐴𝐴, DONE 
• ELSE 

• use evaluation oracle for 𝑝𝑝 to get 𝛻𝛻𝑓𝑓(𝑦𝑦𝑘𝑘)
• 𝐸𝐸𝑘𝑘+1 ⊇ 𝐸𝐸𝑘𝑘 ∩ {𝑦𝑦: 𝑦𝑦 − 𝑦𝑦𝑘𝑘,𝛻𝛻𝑓𝑓 𝑦𝑦𝑘𝑘 ≤ 0}

• Stop when the radius of the ellipsoid becomes ≤ 𝜀𝜀𝜀𝜀/𝑀𝑀

Invariant: If 𝑓𝑓 𝑦𝑦⋆ ≤ 𝐴𝐴 then 𝑦𝑦⋆ ∈ 𝐸𝐸𝑘𝑘 for all 𝑘𝑘
Proof: Convexity of 𝑓𝑓 implies 𝑦𝑦⋆ − 𝑦𝑦𝑘𝑘,𝛻𝛻𝑓𝑓 𝑦𝑦𝑘𝑘 + 𝑓𝑓 𝑦𝑦𝑘𝑘 ≤ 𝑓𝑓 𝑦𝑦⋆ ≤ 𝐴𝐴
Since 𝑓𝑓 𝑦𝑦𝑘𝑘 > 𝐴𝐴, 𝑦𝑦⋆ − 𝑦𝑦𝑘𝑘,𝛻𝛻𝑓𝑓 𝑦𝑦𝑘𝑘 < 0

Ellipsoid Method
𝐎𝐎𝐎𝐎𝐎𝐎 = inf

𝑦𝑦∈ℝ𝑚𝑚
log 𝑝𝑝(𝑒𝑒𝑦𝑦)− ∑𝜃𝜃𝑖𝑖𝑦𝑦𝑖𝑖 = inf

𝑦𝑦∈ℝ𝑚𝑚
𝑓𝑓(𝑦𝑦)

𝒚𝒚⋆ 𝑦𝑦0

Running Time: poly(𝑚𝑚, 𝑡𝑡𝑓𝑓 , 𝑡𝑡𝛻𝛻𝑓𝑓 , log 𝑹𝑹𝑭𝑭
𝜺𝜺

)



Bounding 𝑹𝑹?: As 𝜃𝜃 comes close to the boundary, 𝑦𝑦⋆ must blow up. By how much?

Bounding R and M?
inf

𝑦𝑦∈ℝ𝑚𝑚
log 𝑝𝑝(𝑒𝑒𝑦𝑦)− ∑𝜃𝜃𝑖𝑖𝑦𝑦𝑖𝑖

𝐬𝐬𝐬𝐬𝐬𝐬
𝒒𝒒

∑𝑺𝑺∈𝓕𝓕𝒒𝒒𝑺𝑺 𝐥𝐥𝐥𝐥𝐥𝐥
𝒑𝒑𝑺𝑺
𝒒𝒒𝑺𝑺

 𝒒𝒒 – prob. distribution over 𝓕𝓕

 The expectation of 𝒒𝒒 is 𝜽𝜽

𝑃𝑃(ℱ)

𝒑𝒑𝑺𝑺

𝜽𝜽
𝑆𝑆 ∈ ℱ

Special case of spanning tree polytope: [Asadpour et al. ’10, Oveis-Gharan et al ‘11]

Theorem [SinghV. ’14]: If 𝚯𝚯 ∈ 𝐈𝐈𝐈𝐈𝐭𝐭𝛈𝛈(𝑷𝑷) 𝑅𝑅 ≤ poly(1/𝜂𝜂) – all combinatorial polytopes

Theorem [StraszakV.]: If the unary complexity of all facets is polynomial in 𝑚𝑚 then, 
𝑅𝑅 ≤ poly(𝑚𝑚) – includes almost all combinatorial polytopes (along with tightness result)

⇒ 𝑭𝑭 ≤ 𝒎𝒎



 Theorem [SinghV. ’14]: If 𝚯𝚯 ∈ 𝐈𝐈𝐈𝐈𝐭𝐭𝛈𝛈 𝑷𝑷 then 𝝀𝝀⋆ = 𝑅𝑅 ≤ m/𝜂𝜂
 Proof: Since entropy over a discrete set of size at most 2𝑚𝑚 is at most 𝒎𝒎

 𝜆𝜆∗,𝜃𝜃 + log∑𝑆𝑆 𝑒𝑒− 𝜆𝜆∗,1𝑆𝑆 = ∑𝑆𝑆 ln 𝑒𝑒 𝜆𝜆∗,𝜃𝜃 − 𝜆𝜆∗,1𝑆𝑆 ≤ 𝑚𝑚 ⇒ 𝜆𝜆∗,𝜃𝜃 − 𝜆𝜆∗, 1𝑆𝑆 ≤ 𝑚𝑚 ∀ 𝑆𝑆

 −𝜆𝜆∗

𝑚𝑚
, 𝑣𝑣 − 𝜃𝜃 ≤ 1 ∀ 𝑣𝑣 ∈ convhull {1S}

 (up to a centering and assuming convhull full dimensional)

 −𝜆𝜆∗

𝑚𝑚
∈ polar− convhull

 𝜃𝜃 is in 𝜂𝜂 interior of convhull implies polar− convhull contained in ball of radius 1
𝜂𝜂

⇒ 𝜆𝜆∗ ≤ 𝑚𝑚/𝜂𝜂

Bounding Box 1



Bounding Box 2
 𝑔𝑔 𝜃𝜃 = inf

𝑦𝑦∈ℝ𝑚𝑚
ℎ 𝜃𝜃, 𝑦𝑦 ≔ inf

𝑦𝑦∈ℝ𝑚𝑚
log∑𝛼𝛼∈ℱ 𝑝𝑝𝛼𝛼𝑒𝑒〈𝛼𝛼−𝜃𝜃,𝑦𝑦〉

 Theorem [Straszak-V.]:  Consider a polytope 

𝑃𝑃 = 𝑥𝑥 ∈ ℝ𝑚𝑚: 𝑎𝑎𝑖𝑖, 𝑥𝑥 ≤ 𝑏𝑏𝑖𝑖 ∀𝑖𝑖 ∈ 𝐼𝐼 ∩ 𝐻𝐻 with 𝑎𝑎𝑖𝑖 ∈ ℤ𝑚𝑚 and 𝑎𝑎𝑖𝑖 ≤ 𝑀𝑀

Then ∀ 𝜃𝜃 ∈ 𝑃𝑃 ∃𝑦𝑦 ∈ 𝑩𝑩(𝟎𝟎,𝐩𝐩𝐩𝐩𝐩𝐩𝐩𝐩 𝒎𝒎,𝑴𝑴,𝐦𝐦𝐦𝐦𝐦𝐦
𝜶𝜶∈𝓕𝓕

𝐥𝐥𝐥𝐥𝐥𝐥 𝐩𝐩𝜶𝜶 , 𝐥𝐥𝐥𝐥𝐥𝐥 𝒎𝒎
𝜺𝜺

s.t. ℎ 𝜃𝜃, 𝑦𝑦 ≤ 𝑔𝑔 𝜃𝜃 + 𝜀𝜀

Proof: Let 𝑦𝑦⋆ be an optimal solution

Step1: Write 𝑦𝑦⋆ = ∑𝛽𝛽𝑖𝑖𝑎𝑎𝑖𝑖 -- as a non-negative combination of normal vectors of tight 
constraints at a vertex 𝛼𝛼⋆. Select an 𝛼𝛼 that maximizes 𝛼𝛼, 𝑦𝑦⋆ and then use Farkas Lemma

Step 2: For  𝚫𝚫 = 𝐦𝐦 + 𝐌𝐌 + 𝐦𝐦𝐦𝐦𝐦𝐦
𝜶𝜶∈𝓕𝓕

𝐥𝐥𝐥𝐥𝐥𝐥 𝐩𝐩𝜶𝜶 + 𝐥𝐥𝐥𝐥𝐥𝐥 𝒎𝒎
𝜺𝜺

, let 𝑦𝑦∘ = ∑min(𝛽𝛽𝑖𝑖 ,∆) 𝑎𝑎𝑖𝑖. Then 

ℎ 𝜃𝜃, 𝑦𝑦∘ ≤ ℎ 𝜃𝜃, 𝑦𝑦⋆ + 𝜀𝜀
Relies on the fact that the coefficients of the inequalities defining 𝑃𝑃 are integral – thus for 
any 𝛼𝛼 that does not lie on a facet 𝑎𝑎𝑖𝑖, 𝑥𝑥 = 𝑏𝑏𝑖𝑖 , 〈𝛼𝛼⋆−𝛼𝛼, 𝑎𝑎𝑖𝑖〉 ≥ 1

Step 3: Thus 𝑦𝑦∘ ≤ 𝑚𝑚∆ 𝑎𝑎𝑖𝑖 ≤ 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑚𝑚 ∆M.

Entropy interpretation seems important to obtain the bit complexity bounds



Summary and Challenges

• Tight bit complexity examples for 0/1 polytopes?

• Faster (scaling/interior point) algorithms for max-entropy?

• Polynomial time algorithm for Brascamp-Lieb constant for rank 2?

Thanks! Questions?

• Resolved the bit complexity of max-entropy for a large class of polytopes

• Applications to constrained sampling/optimization, rank 1 Brascamp-Lieb, matrix 
scaling 
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